Equivalence of several generalized percolation models on networks.
نویسنده
چکیده
In recent years, many variants of percolation have been used to study network structure and the behavior of processes spreading on networks. These include bond percolation, site percolation, k-core percolation, bootstrap percolation, the generalized epidemic process, and the Watts threshold model (WTM). We show that-except for bond percolation-each of these processes arises as a special case of the WTM, and bond percolation arises from a small modification. In fact "heterogeneous k-core percolation," a corresponding "heterogeneous bootstrap percolation" model, and the generalized epidemic process are completely equivalent to one another and the WTM. We further show that a natural generalization of the WTM in which individuals "transmit" or "send a message" to their neighbors with some probability less than 1 can be reformulated in terms of the WTM, and so this apparent generalization is in fact not more general. Finally, we show that in bond percolation, finding the set of nodes in the component containing a given node is equivalent to finding the set of nodes activated if that node is initially activated and the node thresholds are chosen from the appropriate distribution. A consequence of these results is that mathematical techniques developed for the WTM apply to these other models as well, and techniques that were developed for some particular case may in fact apply much more generally.
منابع مشابه
0 Percolation and Magnetization for Generalized Continuous Spin Models
For the Ising model, the spin magnetization transition is equivalent to the percolation transition of Fortuin-Kasteleyn clusters. This result remains valid also for the continuous spin Ising model. We show on the basis of numerical simulations that such an equivalence can be generalized to a wider class of theories, including spin distribution functions, longer range interactions and self-inter...
متن کاملOn the topological equivalence of some generalized metric spaces
The aim of this paper is to establish the equivalence between the concepts of an $S$-metric space and a cone $S$-metric space using some topological approaches. We introduce a new notion of a $TVS$-cone $S$-metric space using some facts about topological vector spaces. We see that the known results on cone $S$-metric spaces (or $N$-cone metric spaces) can be directly obtained from...
متن کاملTopological structure on generalized approximation space related to n-arry relation
Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...
متن کاملNetwork-based analysis of stochastic SIR epidemic models with random and proportionate mixing.
In this paper, we outline the theory of epidemic percolation networks and their use in the analysis of stochastic susceptible-infectious-removed (SIR) epidemic models on undirected contact networks. We then show how the same theory can be used to analyze stochastic SIR models with random and proportionate mixing. The epidemic percolation networks for these models are purely directed because und...
متن کاملWeak percolation on multiplex networks
Bootstrap percolation is a simple but nontrivial model. It has applications in many areas of science and has been explored on random networks for several decades. In single-layer (simplex) networks, it has been recently observed that bootstrap percolation, which is defined as an incremental process, can be seen as the opposite of pruning percolation, where nodes are removed according to a conne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E
دوره 94 3-1 شماره
صفحات -
تاریخ انتشار 2016